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The exact time-dependent three-dimensional Navier-Stokes and temperature 
equations are integrated numerically to simulate stably stratified homogeneous 
turbulent shear flows a t  moderate Reynolds numbers whose horizontal mean 
velocity and mean temperature have uniform vertical gradients. The method uses 
shear-periodic boundary conditions and a combination of finite-difference and 
pseudospectral approximations. The gradient Richardson number Ri is varied 
between 0 and 1. The simulations start from isotropic Gaussian fields for velocity and 
temperature both having the same variances. 

The simulations represent approximately the conditions of the experiment by 
Komori et al. (1983) who studied stably stratified flows in a water channel 
(molecular Prandtl number Pr = 5 ) .  In these flows internal gravity waves build up, 
superposed by hot cells leading to  a persistent counter-gradient heat-flux (CGHF) in 
the vertical direction, i.e. heat is transported from lower-temperature to higher- 
temperature regions. Further, simulations with Pr = 0.7 for air have been carried out 
in order to investigate the influence of the molecular Prandtl number. I n  these cases, 
no persistent CGHF occurred. This confirms our general conclusion that the counter- 
gradient heat flux develops for strongly stable flows (Ri x 0.5-1.0) a t  sufficiently 
large Prandtl numbers (Pr = 5) .  The flux is carried by hot ascending, as well as cold 
descending turbulent cells which form a t  places where the highest positive and 
negative temperature fluctuations initially existed. Buoyancy forces suppress 
vertical motions so that the cells degenerate to  two-dimensional fossil turbulence. 
The counter-gradient heat flux acts to  enforce a quasi-static equilibrium between 
potential and kinetic energy. 

Previously derived turbulence closure models for the pressure-strain and 
pressuretemperature gradients in the equations for the Reynolds stress and 
turbulent heat flux are tested for moderate-Reynolds-number flows with strongly 
stable stratification (Ri = 1). These models overestimate the turbulent interactions 
and underestimate the buoyancy contributions. The dissipative timescale ratio for 
stably stratified turbulence is a strong function of the Richardson number and is 
inversely proportional to  the molecular Prandtl number of the fluid. 

1. Introduction 
The objective of this study is to investigate the effects of stable stratification and 

shear on the behaviour and the evolution of homogeneous turbulent flows using the 
method of direct numerical simulation. A numerical method has been developed 
to integrate the exact time-dependent three-dimensional Navier-Stokes and 
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temperature equations in a cubic domain and in time. Owing to the limited 
storage capacity of current computers, the simulation is restricted to moderate 
Reynolds numbers. 

The study is motivated by the need t o  understand and predict the structure of 
stratified turbulent shear flows which occur in practical and atmospheric flows. 
However, this work considers only homogeneous turbulence in which the mean 
velocity and temperature have a uniform gradient in the vertical direction. In  
homogeneous turbulence, spatial gradients of turbulent correlations vanish in the 
statistical mean (Batchelor 1953) so that the divergence of diffusive fluxes is zero. 
This fact simplifies the analysis and allows one to  study the effects of shear and 
stratification without the complication of diffusion. Shear intensifies the turbulent 
fluctuations, whereas the temperature gradient generally attenuates them by 
converting kinetic energy into ‘available potential energy ’ (Gill 1982). The available 
potential energy is proportional to the mean square of density fluctuations or 
temperature fluctuations in the Boussinesq approximation. It measures the amount 
of kinetic energy that is created by gravity forces if the fluid undergoes vertical 
motions which bring each fluid element to  a level where the local density equals the 
mean density. The combined effects of shear and buoyancy forces produce anisotropic 
and scale-dependent structures. 

Stillinger, Helland & Van Atta (1983) and Itsweire, Helland & Van Atta (1986) 
carried out experiments in stably stratified, unsheared salt-water flows with 
turbulent density fluctuations. As the flow developed, buoyancy forces became 
increasingly dominant, produced internal gravity waves and reduced the fluctuations 
to two-dimensional ‘fossil ’ turbulence (Gibson 1987). The direct simulations of 
Riley, Metcalfe & Weissman (1981) provided similar results in spite of the rather 
small Reynolds number used in the simulations. 

Homogeneous turbulent shear flows with temperature gradients imposed in the 
same direction as that  of mean velocity have been studied in a wind tunnel by 
Tavoularis & Corrsin (1981) and Budwig, Tavoularis & Corrsin (1985). The 
temperature variations were passive (small Richardson number) and behaved like 
the velocity fluctuations, i.e. variance and integral lengthscales increased mono- 
tonically and the correlation coefficient of the vertical heat flux reached a value of 
-0.45. The correlation coefficient of the vertical momentum flux in neutrally 
stratified shear flows reaches about the same value (Champagne, Harris & Corrsin 
1970; Harris, Graham & Corrsin 1977). Direct numerical simulations of this type of 
flow has been performed by Rogallo (1981) and Shirani, Ferziger & Reynolds (1981) 
as summarized in Rogallo &. Moin (1984), and by Baron (1982), Laurence (1986), and 
Rogers & Moin (1987). Shirani et al. (1981) studied the mixing behaviour of a passive 
scalar in isotropic decaying turbulence as well as in homogeneous shear turbulence 
with a mean temperature gradient. Rogers, Moin & Reynolds (1986) superposed 
temperature gradients in directions perpendicular to  the shear direction also. They 
were interested in the transport of tlhe passive scalar and its dependence on the 
coherent vortex structures of the shear flow. Gerz (1988b) studied the influence of 
different stable stratifications on such coherent structures in shear flows. 

Komori et al. (1983) measured velocity and temperature fluctuations in a stably 
stratified shear flow in a water channel. They measured in the fully developed flow 
region a mean vertical heat flux in the direction of increasing mean temperature, the 
so-called counter-gradient heat flux (CGHF), accompanied by a change of flow from 
a fully turbulent state to one dominated by a gravity wave field. Komori et al. 
associated these positive heat fluxes with hot ascending eddies superimposed on the 
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FIQURE 1.  Sketch of the computational domain and the mean profiles. (a) The cubical flow domain; 
( b )  mean velocity and temperature profiles U(z), T,(z); (c) flow field in Eulerian frame of reference 
after some time; (d) same flow field in a Lagrangian frame. In this paper, the Eulerian frame is 
being used. 

waves. Webster (1964) investigated stratified homogeneous shear flows in a wind 
tunnel, and did not find a CGHF. One purpose of this paper is to explain this 
difference. 

Second-order turbulence closure models as proposed by Launder (1975, 1976) for 
stably stratified shear flows are of great utility for prediction of geophysical or 
engineering flows but contain model coefficients which in most cases require 
empirical adjustment. Our ultimate goal is to use the results of our simulations of 
stratified shear flows to calibrate existing second-order turbulence closure models. As 
a first step, we test the models of the pressure-strain and the pressuretemperature 
gradient correlations which - besides dissipation - are the most important terms in 
second-order closure models for the flows considered here. Further, an estimate of the 
dissipative timescale ratio for velocity and temperature will be given for flows with 
highly stable stratification where the influence of the shear forces is negligible. This 
timescale ratio is needed to validate closure models of the pressuretemperature 
correlation and the thermal dissipation rate (Warhaft & Lumley 1978; Elghobashi & 
Launder 1983). 

The domain and the mean profiles for velocity and temperature are illustrated in 
figure 1 (a, b ) .  Shear imposes a problem with respect to the boundary conditions. The 
common choice of boundary conditions in direct numerical simulations of 
homogeneous turbulence is periodicity in all spatial directions. However, in the 
presence of shear, a field which is initially periodic in the vertical direction soon 
becomes non-periodic. For illustration, we assume that two parcels of fluid located 
above each other have the same properties initially. As time proceeds, the parcels are 
displaced relative to each other in the horizontal direction owing to different 
horizontal velocities. Thus the common periodicity condition cannot be used in the 
vertical direction. Rogallo (1981) solved this problem by using a time-dependent 
coordinate transformation which corresponds to a Lagrangian reference frame, as 
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illustrated in figure 1 (d).  In this frame of reference, the flow may be assumed to be 
periodic in the direction of the transformed coordinate. This makes it possible to 
apply Fourier-spectral approximations of the fields with respect to this coordinate. 
This method has been used for several studies by the Stanford group, e.g. see Rogers 
& Moin (1987). The disadvantage of this approach is the need for remeshing at a 
frequency idU/dz, which causes interpolation errors of the aliasing type (Shirani 
et al. 1981). This approach has not yet been applied to cases with buoyancy forces and 
it is not clear what difficulties might arise in this method because of the time- 
dependence of the components of the gravity vector in the transformed coordinates. 
Here, we use the alternative approach, originally proposed for pure shear flows by 
Baron (1982), where the equations are discretized in the Eulerian reference frame 
sketched in figure 1 (c) using the so-called ‘shear-periodic ’ boundary condition 
(Schumann 1985). This condition, stated precisely in equation (4), assumes 
periodicity in a direction that varies as a function of time. It corresponds to 
continuous remapping by applying horizontal periodicity and avoids interruptions 
at discrete times. This type of boundary condition is not applicable to Fourier- 
spectral approximations in the vertical but can easily be implemented in a finite- 
difference scheme. 

The details of the mathematical approach and numerical procedure are described 
in $2. The results of the numerical simulations for various Richardson and Prandtl 
numbers will be discussed and compared with the experimental data of Komori et al. 
(1983) and Webster (1964) in $3. Special attention is given in $4 to the analysis of the 
counter-gradient heat flux. Parameters of second-order turbulence closure models 
and the dissipative timescale ratio will be investigated in $5. Section 6 summarizes 
the results. 

2. Mathematical description 
2.1. Computational domain and equations 

We consider a finite cubical domain with side length L .  The mean horizontal 
velocity U ( z )  and mean temperature T,(z) possess uniform and constant gradients 
relative to the vertical coordinate z. The fluid is assumed to have constant 
diffusivities v and y for momentum and heat, respectively. The Boussinesq 
approximation is used, i.e. we assume that the density pa is constant,except for small 
density fluctuations due to temperature fluctuations affecting buoyancy acceler- 
ations. Subsequently all fields are expressed non-dimensionally using pa, L, AU = 
IdU/dzl L, and AT = IdT,/dzlL as reference scales for density, length, velocity, and 
temperature, respectively. 

The normalized Navier-Stokes equation, the heat balance and the continuity 
equation read respectively 

i a Z U ,  

+IRilTG,,, i = 1 ,  2, 3, (1)  
au, a aui -+- ( U j  U J  + Sx,-+Su, a,, = - __-- 
at ax* 3x1 Re ax; axi 

aT a aT 1 a2T 
at ax* 3x1 Re Pr ax; ’ -+-(u~T)+SX,-++U, = -__ 
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where the summation convention is used and ui, T and p are the deviations of the 
instantaneous velocity, temperature and pressure from their respective mean 
profiles. The non-dimensional shear S = (L /AU)  (dU1d.z) = 0, 1 and stratification 
s = ( L / A T )  (dT,/dz) = - 1, 0, 1 are introduced as parameters in order to distinguish 
between cases with and without shear and with unstable, neutral and stable 
stratification, respectively. Terms in the above equations containing S or s describe 
advection due to the mean profiles. The Reynolds number Re = AUL/v, the absolute 
value of the Richardson number Ri = sag LAT/(AU)2 and the Prandtl number 
Pr = v / y  are the independent parameters characterizing the flow where a and g are 
the constant isobaric volumetric expansion coefficient and the gravitational accelera- 
tion. The values of the dimensionless spatial coordinates xi are within the range 
-t < x, < a, and x3 points vertically upwards. The boundary conditions for any 
fluctuation f E {ul, u2, u3, T ,  p }  read 

(4) 

where mi are arbitrary integers. 
The equations are discretized in an Eulerian framework using a second-order 

finite-difference technique on a staggered grid for all the terms in the equations 
except the mean advection where pseudospectral (Fourier) approximation is used. 
The Adams-Bashforth scheme is used to integrate the equations in time. Pressure is 
treated implicitly. The acceleration terms, which are treated explicitly by finite 
differences, are 

(5) ri = -8.13.u.+IRilT~8~,-8,(t$~)-Sa~ Jil, 

where Sj f denotes the common central finite-difference operator andf' the algebraic 
average of two discrete neighbouring grid values f separated by one grid interval in 
direction of the coordinate xj. The integration of velocity from time level n to n+ 1 
proceeds in three steps. We start from 

f(t, x1 + m,, x2 +m,, x3 +m3) = f ( 4  xl-fJm3 2 2 ,  x3)7 

-3 1 
R e 3 3 2  

u$ = u: + At[w, r: - w2 r?-l], (6) 

with weights w1 = 1, w2 = 0 for n = 0;  w1 = g, w2 = $ for n > 0. Then we obtain the 
next refinement of the velocity Gi at x1 by evaluating ug* at the upstream position 
from where it is advected by the mean velocity 8 x 3  during the time-step At, using 
discrete Fourier interpolation, 

3,(x1) = U $ ( X ~ - A ~ S X , ) .  (7) 

The boundary conditions are applied to these velocities so that the divergence can be 
determined in the next step. The pressure pn+l at the new time level is obtained by 
solving the Poisson equation in finite-difference form 

1 
6,6,p"+l = -6 i s i' 

The solution of (8) is obtained using a fast Poisson solver (Schumann 1985) which 
includes the shear-periodic boundary condition at time tn+' and applies a combination 
of fast Fourier transforms and Gaussian elimination. Imposing the pressure boundary 
conditions a t  time t n + l ,  i.e. using the same time level as in (7) when calculating Gi, is 
essential in this algorithm to get correct results. Finally we obtain the solution 

UP+' = 3i-At8ipnt1, (9) 
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which satisfies the continuity equation. Temperature is integrated likewise with 

applying (4) at time level n+ 1.  The boundary condition (4) requires interpolation in 
x1 unless the time step At equals the grid spacing Ax. Baron (1982) applied this 
method for At = Ax. From a linear analysis, we found it necessary for numerical 
stability to reduce the time step to  a fraction of the grid spacing. In  the present case 
we use At = Ax/2. Therefore, (4) is evaluated by means of Fourier interpolation. 
Further details of the numerical techniques are described in Schumann, Elghobashi 
& Gerz (1986) and in Gerz (1988a), where several validation tests are also reported. 
Tests for isotropic turbulence have shown that the energy decay rate and the velocity 
skewness are computed to the same accuracy of a spectral method but the spectral 
method requires only about half the resolution. Evaluation of mean advection by 
Fourier interpolation gives results which satisfy the condition of invariance under 
Galilean transformation. It is difficult to achieve this invariance with pure finite- 
difference schemes (Laurence 1986). Moreover, the results are homogeneous in the 
vertical direction in spite of the explicit appearance of the coordinate value x3 in the 
equations. 

Tn+' = - T.  - Now, the fields are adjusted to  the remaining boundary conditions by 

2.2. Initialization parameters 

The initial fluctuation fields of velocity and temperature are generated from 
Gaussian random numbers with defined spectra for the variances (Schumann 1985). 
The initialized fields are periodic in the three spatial directions and the velocity is 
divergence-free with respect to the discretized form of the continuity equation. 

The initialization parameters are selected to simulate the water channel 
experiment of Komori et al. (1983) for a stably stratified, homogeneous turbulent 
shear flow. In  that experiment the shear is due to the friction of the mean flow a t  the 
boundary layer along the. bottom of the channel and the stratification is due to 
heating a t  the water surface by means of condensing steam. The stratified layer 
between 0.4 < z / 6  < 0.75 (6 is the flow depth and z the height above channel bottom) 
was presumed by the experimentalists to be free of wall effects and a good 
approximation to a homogeneous shear flow. Our simulation results will corroborate 
this presumption. In  the experiment, turbulence measurements for a wide range of 
values of the local gradient Richardson number (Ri = 0 to 1) were obtained. The 
Taylor microscale is unknown so that we cannot deduce a value of the turbulence 
Reynolds number but the ' channel Reynolds number ' related to the hydraulic radius 
of the channel and the cross-sectional mean velocity varied from 9100 to 17000, 
which is rather small. Nothing is reported about the values of the initial turbulence 
correlations or energy spectra. Therefore, the initial isotropic turbulence in the 
simulation has been assumed to have the parameters and the spectrum reported in 
table 1 .  

The number of grid points is 64 in all three directions. This value is about the 
maximum one can achieve on a CRAY-1 computer because of limited storage 
capacities. Besides the Richardson and Prandtl numbers, independent input 
parameters are the peak wavenumber of the initial spectrum k,, the root-mean- 
squares (r.m.s.) velocity v,  the turbulence Reynolds number based on the Taylor 
microscale and the r.m.s. velocity, and the temperature variance m. All other 
quantities are derived from these values. The peak integer wavenumber is selected 
to  be large enough that the integral lengthscale may grow during the simulation 
period. Also, it is selected to be large enough to obtain an adequate number of 
independent data points in the numerical scheme at wavenumbers below this peak 
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Physical parameters 

Peak integer wavenumber 

Root-mean-square velocity 

Root-mean-square temperature 

Turbulence Reynolds number 

Molecular Prandtl number 

Gradient Richardson number 

Three-dimensional initial 

Turbulence kinetic energy 
Energy dissipation rate 

Reynolds stresses 

energy spectrum 

Heat fluxes 

Dissipation rates of the 
Reynolds stresses 

Dissipation rate of the 
temperature variance 

Dissipation rates of the 
heat fluxes 

Pressurestrain correlation 

Pressuretemperature 

Integral lengthscale 

Taylor microscale 

Kolmogorov lengthscale 

Reynolds numbers 

Shear number 

correlation 

k, 

y = (W)t 
u = (-13); 

Re, = u A / u  

Pr = u jy  

Ri = sagLAT/(AU)2 

2 a T a T  
ETT = ~ - -  Re Pr ax, ax, 

I + P r m  
Re Pr ax, ax, ‘IT = --- 

6 

0.01644 

0.01644 

24.7 

0.7, 5 

0, 0.1, 0.2, 0.3, 0.5, 1 

4.054 x lo-‘ 
1.042 x lo-& 

2.703 x i = j 

0 

O , i * j  

0.695 x i = j 

0,i =kj 

0.992 x Pr = 0.7 

0.139 x Pr = 5 

0 

0 

0 

0.0495 

0.0259 

0.0026 

58060, 47.2 

3.01 

Comparison with experiment a t  
Numerical parameters 

M Ax At t,,, time steps time step 

64 1jM A x j 2  6.0 768 4.5 57 6 

TABLE 1 .  Definitions and values of the dimensionless initialization parameters. The overbar 
denotes the spatial averaging operator (sum over all grid points) 

wavenumber. For a smaller peak wavenumber, the statistics of large-scale 
components would be poorer. On the other hand, the peak wavenumber has to be 
small enough that the energy, the viscous dissipation and especially the thermal 
dissipation rates are sufficiently small a t  the largest resolved wavenumber k,,, = 32. 
Figure 2 shows that this requirement is adequately met for viscous dissipation when 
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using the parameters selected here. Corresponding spectra of temperature variance 
show smooth and decaying behaviour at early times. At later times ( t  > 3), some 
variance piles up near the upper wavenumber limit but we have no indication that 
these limitations are important. The energy spectrum determines the values of the 
integral lengthscale 1. The r.m.s. velocity v is chosen to give a suitable value of the 
shear number Sh. For too small a shear number, the integration time would have to 
be very large to obtain a quasi-steady state, as discussed by Harris et al. (1977). For 
too large a shear number, the nonlinear turbulent-turbulent interactions are small 
in comparison to mean-shear turbulence interactions. From preliminary parameter 
studies the value Sh x 3 has been found to  be optimal in this sense. This value is close 
to those in wind tunnels as summarized by Rogers & Moin (1987), which typically 
vary between Sh = 2.0 (Champagne et al. 1970) and 2.8 (Tavoularis & Corrsin 1981). 
The Reynolds number Re, is taken such that the spectra near the cut-off wavenumber 
k,,, = 32 stay small enough for accurate simulations. The selected value and the 
resolutions are the same as used by Riley, Metcalfe & Weissman (1981). It is however 
smaller by a factor of about ten than the values used in wind-tunnel experiments, see 
the summary in Rogers & Moin (1987). Despite this, the resultant large-scale 
Reynolds number Re = AUL/v is quite large and even larger than the channel 
Reynolds number reported by Komori et al. (1983). The Kolmogorov scale is 
considerably smaller than the grid spacing but the grid-shear Reynolds number 
introduced by Rogers & Moin (1987) is of reasonable magnitude, Ax(# Re); = 3.8, and 
even a little less than the value used by Rogers & Moin. The initial temperature 
variance is set to TT = v2, which is a rather arbitrary selection but it ensures that 
temperature and velocity fluctuations have the same order of magnitude. I n  order 
to consider the influence of the initial conditions on the developing flow, we also 
performed a calculation with zero temperature variance initially and Ri = 1. In 
agreement with calculations using the rapid distortion theory (Hunt, Stretch & 
Britter 1988), we found that the oscillation amplitudes of ww and wT are larger for 
TT = 0 initially. However, in both cases (m, = vi and TT, = 0) a persistent positive 
vertical heat flux was established in the flow, as will be discussed below. 

- 

FIGURE 2. Spectra of kinetic energy and dissipation rate. (a) Spectra of E and 6 at t = 0 ;  ( b )  
spectra of E at t = 6 for Ri = 0, 0.1, 0.5 and 1 .  
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FIGURE 3. Turbulence mean values versus time for different values of the Richardson number Ri 
as obtained from the simulations. (a)  Kinetic energy, ( b )  temperature variance, (c) r.m.s. values of 
u (upper curves) and w (lower curves); the correlation coefficients of (d )  the negative vertical 
momentum flux, ( e )  the downstram heat flux and (f)  the negative vertical heat flux. The quantities 
in (a ) ,  ( b )  and (c) are normalized by their initial values. In  (c) (w’/wh) and ( e )  the data for Ri = 0.3 
are omitted for clarity because they do not give any additional information. 

3. Results and discussion 
3.1. Time development of the turbulence statistics 

Mean qualities are obtained by ensemble averaging of all their point values in the 
computational domain a t  a given time. Figure 3 depicts the dynamic development 
of various mean quantities for different values of the gradient Richardson number. 

1s FLM 2W 
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The results are normalized either by the initial values (subscript 0) or by the actual 
r.m.s. values. In the absence of buoyancy, we see that the turbulence energy 
increases owing to its production by the work of the shear against the developing 
vertical momentum flux, as expected. With increasing Richardson number, stable 
stratification damps the turbulent motion. When the Richardson number exceeds a 
critical value, the damping due to buoyancy balances the energy production rate due 
to shear. Figure 3(a)  suggests a critical gradient Richardson number of about 0.1 
which is smaller than the value of 0.25 for the linear case (Miles 1961). However, for 
very strong stability (Ri = 1 ) ,  energy decreases a t  a slower rate, see figure 3(a) .  Also 
the r.m.s. value of the vertical velocity component w', which one would expect to 
decrease monotonically with increasing stability (Webster 1964 ; Launder 1975), 
shows a similar behaviour to the energy for the largest Richardson number, see figure 

In order to understand this change in the trend of E and its components one has 
to examine the dynamic behaviour of the fluxes and their interactions using the 
corresponding balance equations. After spatial averaging in the periodic domain for 
homogeneous turbulence, the dimensionless equations of the non-zero components of 
the Reynolds stresses, the kinetic energy, the heat fluxes and the temperature 
variance read respectively (see table 1 for the nomenclature) : 

3 ( c ) .  

dm 
dt 
-- - -2suw+#,,-€]], 

dm 
dt - = $22 -%29 

d m  
dt 

d m  
~ = -Sww+lRiluT+#13 

dt 

-- - 21Ril wT+ #33 - E ~ ~ ,  

dE - = -Suw+lRilwT-a, 
dt 

€13, 

-- - - s m+ I Ril TT+ #3T 
dwT 
dt 

dm - - = - 2 ~ w T - c ~ ~ .  
dt 

Initially, the pressure correlations #ij  and # iT ,  and the off-diagonal components of 
the dissipation rates aij and eiT,  are zero. The diagonal components are small because 
of the large Reynolds number. Thus, the initial trends of the solutions can be fully 
explained by means of the production terms which are linear in the shear S, the 
temperature stratification s and the Richardson number Ri. Only quadratic 
correlations are non-zero initially and contribute to the flow development. This 
explains the linear increase in the magnitude o f m  and n. The vertical momentum 
flux is negative owing to the sign of its production rate. The vertical heat flux, 
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however, is negative (down-gradient) only for small Richardson numbers. If the 
Richardson number and the temperature fluctuations are large, the vertical heat flux 
may become positive. This means that turbulence transports heat vertically upwards 
from cold to warm regions in the fluid. This is the so-called ‘counter-gradient heat- 
flux ’ (CGHF). A negative heat flux increases the temperature variance thus resulting 
in a change of sign of the correlation coefficient of wT for sufficiently large 
Richardson numbers even if the initial temperature fluctuations are small as 
displayed in figure 3 .  For Ri = 0.5 and 1 ,  we observe such a CGHF. Its magnitude 
oscillates with a time period of about n/(Ri)i  but persists different from zero. 

The remaining correlations are controlled by the early development of the vertical 
momentum flux and vertical heat flux. These fluxes create a downstream heat flux 
uT in the presence of both shear and stratification despite the absence of an imposed 
mean temperature gradient in that direction. The correlation coefficient of uT 
increases monotonically for all positive Ri and approaches an asymptotic value of - 0.45. The downstream velocity variance depends only on the vertical momentum 
flux, which is always negative or, in the case of Ri = 1, almost vanishing for t > 4. 
The vertical velocity variance, however, depends on the sign of the vertical heat flux. 
I ts  sign change causes the observed trend of w‘ in figure 3 ( c ) .  The lateral velocity 
would always decay unless i t  receives energy by the redistribution effect of the 
pressure-atrain correlations. 

It is clear that the initial trends of the correlations which result from the initial 
Gaussian fields cannot be compared directly with experimental data. However, the 
non-Gaussian characteristic of real turbulence develops quickly as will be shown in 
figure 4(a) below. Thus, we can compare the later results with observations. I n  the 
case of neutral stratification, -m/(u’w’)  reaches a value of 0.5 which is very close 
to  the values observed by Champagne et al. (1970), Harris et al. (1977) and Tavoularis 
& Corrsin (1981). The kinetic energy E/h& first decreases, reaches a minimum and 
then increases monotonically. In  bhe experiment of Champagne et d.  (1970) the 
increase was small because the wind tunnel was not large enough, but our results 
agree well with the measurements of Harris et al. (1977). Rohr et a1.(1988) find that 
the turbulence intensities increase nearly linearly with time t .  Although our 
simulation time is not large enough to support this finding quantitatively, the results 
are qualitatively consistent. The maximum value of the correlation coefficient 
- wT/ (w’T)  is 0.6 for weak stratification. Itsweire et al. (1986) determine maximum 
values of 0.5 for weakly stratified turbulence without shear. Tavoularis & Corrsin 
(1981) report a value of 0.45 and Budwig et al. (1985) find a value of 0 .74 .8  for very 
small Richardson numbers. Thus, the values of our computed correlation coefficients 
lie within the range of measurements although our turbulence Reynolds number is 
smaller than those of all cited experiments. 

The temperature variance TT decays slowly for zero mean temperature gradient 
(s = Ri = 0 ) ,  but increases strongly for weak stratification. Corresponding measure- 
ments are only available for very small Richardson numbers such that buoyancy 
effects could be neglected. Sirivat & Warhaft (1983) observed that the temperature 
variance first decreases and then increases. The rate of increase is large for large 
temperature gradients. In  contrast, the experiments of Budwig et al. (1985) with 
transverse mean temperature gradients also a t  small Richardson number show only 
initially a moderate increase of temperature variance, while the variance becomes 
close to stationary further downstream in their wind tunnel. I n  the simulations, the 
strong increase of the temperature variance might be due to  the larger Prandtl 
number which causes smaller thermal dissipation rates eTT.  Thus, it is reasonable 

- 
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that the trends in the simulations differ from those observed in wind tunnels. The 
temperature variance increases more strongly than the kinetic energy. This is 
another reason why the term IRilW in (16) dominates after a short time and results 
in a decrease of -a which eventually develops into a CGHF. 

The down-gradient heat flux is typical for turbulence at neutral or weak 
stratification. A zero vertical heat flux in a stratified flow can be taken as an indicator 
of gravity-wave-like motion (Stewart 1969). The CGHF represents, however, an 
unusual flow state which requires further discussion. We shall come back to this 
aspect in $ 4 .  As suggested by Stewart (1969), Stillinger et al. (1983) and Itsweire 
et al. (1986), one may expect that the flow state changes from basically turbulent to 
more wave-like at the time when the negative vertical heat flux changes from 
maximum to minimum values. In  the simulated flows, the periods when the flow 
changes character in this sense are 1 < t < 3 for R i  = 1 ,  and 1.2 < t < 4 for Ri = 0.5. 

3.2. The guasi-steady state 
As discussed by Champagne et al. (1970), Harris et al. (1977) and Rohr et al. (1988) for 
cases with negligible buoyancy forces, the present flow will not achieve equilibrium. 
For neutral stratification, steady state would require a balance between shear 
production -mdU/dz x c,v2dU/dz and dissipation rate E x c,v3/ l .  The coefficients 
c p  and c, are approximately constants of order 0.5 for high Reynolds numbers. Thus, 
stationarity requires that the ratio (cp/c , )  Sh becomes unity, where Sh is the shear 
number defined in table 1. In  our case, S h  = 3.01 so that shear production exceeds 
the dissipation rate. For stably stratified turbulence and very weak shear, the 
damping due to buoyancy and dissipation will dominate so that the turbulence 
decays. Only coincidentally, for a critical Richardson number, the shear production 
may just balance the dissipation terms. We have seen that the value of this critical 
Richardson number is about 0.1 for the present flow conditions. This value must be 
a function of the shear number because when the flow is close to steady state in 
neutral stratification, small buoyancy forces suffice to cause damping. On the other 
hand, the result of the linear theory, Ri = 0.25 (Miles 1961), is to be expected for 
Sh +a. I n  our case, however, we are far from linearity and do not reach a stationary 
state. 

A generalization of Batchelor's ( 1953) velocity-derivative skewness coefficient for 
anisotropic turbulence, 

l 3  
-; c ( a u z / a x i ) 3  

is a measure of the nonlinear energy transfer across the wavenumber space. Its time 
variation, depicted in figure 4(a), shows that this energy transfer is established at  
t = 1. It indicates a strong nonlinearity for neutral and weakly stable stratification, 
and reduced nonlinearity for Ri 2 0.5. Figure 4 ( b )  shows that the lengthscales 
increase initially, which is a consequence of the energy input due to shear at small 
wavenumbers and the energy loss due to dissipation a t  large wavenumbers. As the 
flow with large Richardson number develops, buoyancy forces suppress nonlinear 
turbulence interactions, causing the lengthscales to  remain nearly constant and the 
skewness to diminish. In  any case, the effects of shear and buoyancy cause deviations 
from a stationary state. This non-steady behaviour makes it difficult to obtain any 
conclusive results from the simulations or corresponding experiments. 
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FIGURE 4. Velocity-derivative skewness 8, and normalized integral lengthscale Z/Z, versus time 
for various Richardson numbers Ri. 

Fortunately, however, we can expect to achieve a ' quasi-steady ' or ' asymptotic ' 
state, in which all turbulence correlations properly normalized with the actual r.m.5. 
velocity and temperature fluctuations become nearly constant. The quasi-steady 
state could be reached exactly if the lengthscale were to become constant (which is 
indeed the case for Ri 2 0.5). Then, the dissipation rates (and also the correlations of 
pressure-strain and pressure-temperature gradient) become a linear function of the 
turbulence variances. Thus, (lo)-( 17) become a homogeneous linear system with 
seven linearly independent equations. Such a linear system has eigensolutions with 
complex eigenvalues. The imaginary parts of the eigenvalues are related to  the 
dimensionless Brunt-Vaisala frequency N = IRil; of free vertical oscillations in a 
stratified fluid. The buoyancy forces couple EVB with GZ' and uw with so that four 
oscillating modes with two pairs of complex-conjugate eigenvalues are to be 
expected. The real parts are due to the inverse timescales of production minus 
dissipation rates. Their magnitudes are larger than the Brunt-Vaisala frequency for 
large shear numbers. After some time, the eigensolution corresponding to the 
eigenvalue with maximum real part dominates relative to all other eigensolutions 
and then all solution components are proportional to the components of the 
corresponding eigenvector so that their ratios are constants. Schumann (1987) has 
applied a second-order closure model for (lo)-( 17) and computed the corresponding 
eigensolutions numerically. He found, as expected, that for the parameters 
corresponding to the present case, only one eigensolution with maximum real part of 
the eigenvalue exists and this eigenvalue is purely real. In  addition, two pairs of 
complex-conjugate eigenvalues arise with smaller real parts. Thus, even for non- 
constant slowly changing lengthscales we can in fact expect to find a quasi-steady 
state in which the normalized turbulence correlations vary only as fast as the integral 
turbulence lengthscale does. 
The difference between the largest and the second largest eigenvalue controls the 
time required to achieve the quasi-steady state. The present system has seven 
complex eigenvalues. For an order of magnitude estimate we may assume that the 
real parts of the eigenvalues are equidistantly distributed between zero and the 
maximum value. Thus we expect to  achieve the quasi-steady state after a time of 
order 7 s l E  x 7ull  = 7/Sh x 2.4. Figure 3 indicates that  this estimate is only little 
smaller than the actual value, and the correlations remain almost constant after a 
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FIGURE 5.  Turbulence quantities versus gradient Richardson number. The experimental data of 
Komori et al. (1983) in water are shown by circles (0, 0 ,  0 )  and by approximate interpolation 
(full curve). The dashed curve represents Webster’s (1964) measurements in air. The simulation 
results are indicated by crosses (+ )  for Pr = 5 ,  and by squares (0) for Pr = 0.7 a t  t = 4.5. 

time of about 3.5. We have also performed simulations with 32 grid points in each 
direction over much longer times (up to t = 24) which confirmed the quasi-steady 
state and showed for Ri = 1 that wT stays definitely positive while uw oscillates with 
small and decreasing amplitude around zero (Schumann et al. 1986). 

3.3. Comparison with Komori et al.’s measurements (Pr = 5 )  

In this section we discuss Komori et al.’s (1983) measurements and the simulation 
results for Pr = 5. We assume that the experiment is in quasi-steady state a t  the 
position of the measurements. For Ri = 1, we achieved the best agreement with the 
measurements a t  t = 4.5. Thus, we compare the results of all simulations a t  this time, 
which is close to the final time of our simulation, with the experimental results. 
Figure 5 compares different measured and simulated turbulence quantities for flows 



Direct numerical simulation of turbulent shear ftows 577 

with Ri = 0.01, 0.1,0.2,0.3,0.5, and 1. Both the experiment and simulation show that 
with increasing Richardson number the ratio of the r.m.s. values of the vertical and 
the downstream velocity fluctuations w’/d = (wW)i/(uu)i decreases for weakly stable 
stratification. But this trend reverses, becoming one of increasing w’, if the flow is 
strongly stably stratified. The ratio of the lateral and the downstream r.m.s. 
velocities w ’ / d  remains unaffected by the variations of Ri. For this ratio, the 
experimental values are about 20 % lower than the simulations. A second-order 
closure model predicts about the same difference between model results and the 
measurements (Schumann 1987). The reason may be that in the experiment the 
lateral velocity fluctuations are smaller than they would be in an infinitely wide 
channel. The lateral boundaries of the channel are the only means by which the flow 
in this direction is influenced and may result in smaller values of w‘. The alternative 
that the models underestimate the energy redistribution by the pressurestrain 
correlation g522 is less likely because it would also affect the two other velocity 
components which exhibit reasonable agreement with the measurements. Figure 5 
shows further that the negative correlation coefficients of the vertical fluxes of 
momentum and heat, both in the experiment and in the simulations, vanish and then 
change sign for Ri 2 0.5 and that the ratio of the vertical and the downstream heat 
fluxes always remains smaller than unity, i.e. uT is larger than for all stable 
stratifications. In  summary, the agreement between measured and simulated results 
is qualitatively and quantitatively very good and supports the validity of the 
simulations for the present case. 

3.4. Simulation of an  air $ow (Pr = 0.7) 
In  this section we compare two simulated flows with different molecular Prandtl 
numbers, Pr = 0.7 (air) and 5 (water). We use the same physical and numerical 
initialization parameters as above, see table 1.  We achieve the same results 
qualitatively as Webster’s (1964) wind-tunnel measurements : figure 5 illustrates that 
the negative turbulent vertical heat flux in the quasi-steady flow a t  t = 4.5 
approaches zero but never changes sign even for strong thermal stability, Ri 2 0.5. 
This coincides with Webster’s data, shown as a best-fit curve in figure 5, who also 
observed no positive heat fluxes Z. The ratio of vertical and downstream heat fluxes 
corroborates this result. 

Interestingly, the ratio of vertical and downstream r.m.s. velocity is rather 
insensitive to  Ri for Pr = 0.7, whereas the correlation coefficients of the vertical 
momentum fluxes of high and low Prandtl-number flows are almost indistin- 
guishable. The computed results for w‘/u‘ for Pr = 0.7 agree much better with 
Webster’s data than do the corresponding values for Pr = 5 with Komori’s results. 
This further supports our conclusion that the small values reported by Komori et al. 
(1983) may be induced by sidewall effects. 

3.5. Rates of dissipation 
Here, we shall discuss further the results for Pr = 5. The velocity and temperature 
fluctuations have been initialized isotropically, and therefore the initial values of the 
mechanical and thermal rates of dissipation differ by the value of the Prandtl 
number: eo = eii,/2 = 3 ~ , , ~ / 2  = 3PrcTT0/2. Thus, for Pr = 5, the initial value of eTT 
is approximately one order of magnitude smaller than the kinetic energy dissipation 
rate. 

Figure 6 shows the time variation of the dissipation rates as they develop in 
manners similar to those of the kinetic energy and the temperature variance 
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respectively, compare figure 3(a,  b ) .  For Ri = 0, the initial trends of both the 
mechanical and thermal dissipation rates reflect the effect of inertial-convective 
energy transfer from small to large wavenumbers. Increasing Richardson number 
decreases the mechanical dissipation rate because of buoyancy damping which acts 
a t  all scales. The thermal dissipation rate increases strongly because of the excitation 
of small-scale temperature fluctuations by the heat flux. For strong stability, 
however, the trends change: the maximum value of eTT at Ri = 1 is less than that 
a t  Ri = 0.5, whereas c is larger a t  Ri = 1 than a t  Ri = 0.5. 

It is noteworthy that, for Ri = 1. the increase of the mechanical dissipation rate 
in the time period 2 < t < 4 originates mainly from eS3, i.e. from vertical motions, see 
the dashed curve in figure 6 ( a ) .  Thus, we expect that the CGHF is correlated with 
fine-scale motion which is turbulent even at high Richardson numbers, at least in thiv 
intermediate time period. Similar observatiom have been reported by Riley et al. 
(1981) from simulations of unsheared stratifled turbulence. On the other hand, we 
also notice a CGHF for Ri = 0.5, see figure 3 ( f ) ,  but without any remarkable increase 
of E .  In  this case of moderate stratification, the CGHF OCCUFS late, a t  t x 4 when the 
turbulence dynamics have already been reduced considerably (compare w' for Ri = 
0.5 and 1 in figure 3 c ) .  The reason for that is basically the relative importance of 
production of kinetic energy and damping of temperature variance a t  small scales 
due to buoyancy forces. Note that for Ri 2 0.5 and t > 4, the decay of the thermal 
dissipation rate is weaker than the decay of the mechanical dissipation rate. This is 
a consequence of the large Prandtl number, for which velocity fluctuations are 
damped out more quickly than temperature fluctuations. Thus, the final state of 
turbulence at high Richardson and Prandtl numbers exhibits dynamically inactive 
and small-scale temperature fluctuations. 

3.6.  Anisotropy 
Shear and buoyancy forces acting on isotropic turbulence cause depature from 
isotropy such that turbulence kinetic energy will be distributed unequally among the 
velocity components. The anisotropy tensor is commonly defined as 

FIGURE 6. Viscous and thermal dissipation rates versus time. ( a )  -, E/E , , ;  ---, e33/c38, 
for Ri = 1 ; (6) eT,/eTT,. Note the different scaling of the ordinate axes. 



Direct numerical simulation of turbulent shear flows 

0.25 - 

4 1 

0 -  

4 a  - 

- 

579 

0.25 

bll 

baa 

- 0.25 - 0.25 a 
0 2 4 6 0 2 4 6 

t t 

FIGURE 7. Normalized misotropy of stresses and dissipation rates. 

Figure 7 ( a )  depicts the diagnonal components of this tensor for Pr = 5. Launder 
(1975) postulated an increase of the absolute values of b,, and b,, with increasing Ri. 
The direct simulations, however, confirm this only for weakly and moderately stable 
stratification (0 < Ri < 0.5). When the flow has reached a quasi-stationary state, the 
components of the anisotropy tensor for Ri 2 0.5 are significantly smaller than those 
for Ri = 0 or 0.1. The anisotropy components in the downstream and vertical 
direction have larger magnitude and opposite signs, whereas b,, = - (bll + b,,) is 
much smaller and insensitive to Ri. Figure 5 indicates that w'/u' < 1 and thus 
Ib,,[ < bll. Both the meastlrements of Komori et al. and our simulations show that a 
strong thermal stability reduces the anisotropy of the flow, whibh might be a rather 
unexpected behaviour but is explainable as discussed in 93.1. 

The anisotropy tensor of the dissipation rate can be calculated from 

The correlations d,, and d,, are plotted in figure 7 ( b ) .  The anisotropy of the 
dissipation tensor develops qualitatively in the same manher as the anisotropy of the 
Reynolds stresses. It is surprising that the magnitude of the dissipation anisotropy 
is only a little smaller than that of the stresses. At high Reynolds numbers, one 
expects locslly isotropic turbulence with isotropic dissipation rates. Here, however, 
the turbulence intensity is restricted to moderate values of Re owing to the restricted 
numerical resolution. For this reason, the dissipation ia directly influenced by the low- 
wavenumber parts of the spectrum, which is anisotropic. This however is only one 
reason far the anisotropic values of the dissipation terleor. Another is that shear and 
buoyancy forces create anisotropy even a t  the small scales. Note that the anisotropy 
of the dissipation tensor tends to reduce the anisotropy of the stresses and thus 
supports the isotropizing effect of the pressure-strain correlations, see $5 below. 

3.7. Turbulent Prandtl number 
The turbulent Prandtl number is the ratio of the turbulent diffusivities of momentum 
and heat. In the normalized form used here it reads 

- uw 8 
u -- 
- wTS' 
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FIQURE 8. Turbulent Prandtl number normalized with its value for neutral stratification versus 
gradient Richardson number. Experimental data by Webster (1974) (0, O),  data obtained from 
Launder’s model (1975) (-) and results from direct numerical simulations (with error bars) 
for Pr = 0.7. The error bars reflect the scatter of the numerical results in the time interval 
5.5 < t < 6. 

In  figure 8 the turbulent Prandtl number, obtained from the simulation of an air flow 
(Pr = 0.7), is plotted versus Richardson number. The values are normalized by gtor 

which is the value of vt for Ri = 0. Our result for this reference value is 0.79+_0.01 
in the time interval 5.5 < t < 6.0. Webster (1964) measured much smaller values for 
gtO, varying between 0.15 and 0.3. Tavoularis & Corrsin (1981) measured values 
between 1.06 and 1.12 for this turbulent Prandtl number. Launder (1975) adjusted 
his second-order closure model to other data of Webster (1964) and obtained 
vtO = 0.63. The normalized turbulent Prandtl number increases with Richardson 
number because buoyancy suppresses heat flux more than momentum fluxes. It 
becomes infinite when the heat flux vanishes. This is the case for a Richardson 
number of order 0.5 in our simulations for both Pr = 5 and 0.7. The singularity near 
Ri = 0.5 explains the growing scatter of the results with increasing Richardson 
number when Z diminishes and approaches zero. The general trend is equally 
predicted by Webster (1964), Launder (1975) and by our simulations. 

4. The physics of the counter-gradient heat flux (CGHF) 
In the previous sections, we have shown that a persistent CGHF arises for strong 

stratification if the Prandtl number is sufficiently large. CGHFs have also been 
observed for stably stratified homogeneous turbulent flows without shear in the 
water experiments of Itsweire et al. (1986) and in the corresponding direct simulations 
of Riley et al. (1981). Deardorff (1966) and Schumann (1987) show that CGHF also 
arises in stably stratified parts of buoyancy-induced inhomogeneous turbulence. We 
have explained this phenomenon in terms of (16) which implies a positive production 
rate of the heat flux counter to  the mean temperature gradient if (RilW is larger than 
all other source or sink terms in this equation. In  this section, further properties of 
the CGHF will be explained and compared to the findings of Komori et al. (1983). 

Down-gradient heat flux corresponds to positive mean temperature gradient and 
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FIGURE 9. Turbulence and wave characteristics for stable stratification. The sketches of signals of 
w (thick curves) and T (thin curves) illustrate typical phase angles according to the Richardson 
number which increases from top to bottom. (Adapted from Komori et al. 1983.) 

X 

FIGURE 10. Instantaneous velocity and temperature signals versus downstream coordinate x as 
computed for t = 4, and y = 0.5, z = 0 with (a )  Ri = 0 and ( b )  Ri = 1. The signals show the expected 
phase angles. 

negative correlations of wT and, hence, implies a mean phase angle p, of order x as 
sketched in figure 9. If the phase angle decreases to x / 2  the heat flux vanishes. A 
phase angle of order x / 2  implies that aw/at and T are in phase and this is typically 
the case for gravity waves (Stewart 1969). If the phase angle decreases further and 
approaches zero, the heat flux changes sign and becomes positive. Komori et al. 
(1983) call this state ‘intermittent waves’. Figure 10 shows signals W ( Z )  and T(z) a t  
time t = 4 as computed from the direct simulations. Although the phase angles 
exhibit considerable scatter, the results for Ri = 0 and 1 clearly corroborate the 
observed change in phase angle from q x x to q x 0. Figure 10 ( b )  also illustrates that 
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the phase angle is zero in particular with respect to high-wavenumber components 
of the signal. This fact is confirmed quantitatively by velocity-temperature cross- 
spectra (Gerz 1988a), which show clearly that the heat transfer is positive for 
Ri = 1 in particular at high wavenumbers, while it is negative or zero for small 
wavenumbers. This behaviour is to  be expected from the increasing ratio of 
temperature fluctuations to velocity fluctuations with increasing wavenumber 
because of the weaker dissipation rate of temperature fluctuations a t  this rather large 
Prandtl number. The dissipation rates, see figure 6, reflect these facts. High- 
frequency components of the CGHF cause an increase of the dissipation rate for 
kinetic energy while they reduce the dissipation rate of temperature variance. 

For strongly stable stratification, Komori et al. (1983) found that the gravity 
waves dominate the large scales, and are superimposed by turbulent ‘hot eddies ’ at 
the small scales. We prefer to call the ‘hot eddies ’ ‘hot active cells ’ as long as they 
are mixed by the turbulence and ‘hot inert spots ’ when the velocity fluctuations are 
almost damped out. This seems to be a more suitable nomenclature for what happens 
in such flows. 

Komori et al. (1983) report that the ‘hot cells ’ are advected from upstream by the 
mean flow where they originate owing to the interaction of the velocity fluctuations 
with the strong positive temperature gradient in the upper part of the channel. In the 
simulations with periodic boundaries and with zero-mean advection, the hot cells 
cannot be generated upstream, rather they must be formed locally or in the past. In 
order to demonstrate that this is in fact the case, we discuss instantaneous fields of 
vertical velocity, temperature and heat-flux fluctuations at various Richardson 
numbers and times. 

In figure 11 horizontal cross-sections of the three-dimensional field of the vertical 
heat flux are plotted at different times for Ri = 0.1 and 1. The initial values prescribe 
isotropic fields and thus zero mean vertical flux. This can be verified from the plot 
for t = 0 where the number of positive and negative local heat fluxes is approximately 
equal. For moderate Richardson number (Ri = O . l ) ,  the areas with locally negative 
heat fluxes grow with time, and so does the mean, see figure 3(f).  For Ri = 1 and 
t = 2, the distribution of heat flux looks much the same as a t  t = 0, i.e. the mean of 
w T  vanishes again. This agrees with the temporal development of reported in 
figure 3 where the heat flux changes sign a t  about t = 2. At time t = 4, however, areas 
with positive local heat fluxes predominate as seen in figure 11.  Obviously, the 
positive heat flux is carried by relatively small-scale cells. 

Our results differ from those of Komori et al. (1983) in that we observe not only hot 
rising cells (w > 0, T > 0) but also, equally often, cold descending parcels (w < 0, 
T < 0) ,  all contributing to the positive heat flux. This is illustrated in figure 12 where 
horizontal cross-sections of the fields of the instantaneous vertical velocity and the 
temperature fluctuations are plotted separately for Ri = 1 at time t = 4. Negative 
deviations from the reference values occur as frequently as positive ones. In the 
simulations, this result is to be expected because of symmetrical linear external 
forces. In  the laboratory experiment, however, the temperature profile is nonlinear, 
d2T,/dz2 > 0, and thus causes a positive skewness of the distribution of the 
temperature fluctuations, S, = TTT/(TT)i > 0, with few, but strongly positive, and 
many, but weakly negative, deviations from the mean temperature. The velocity 
reacts to this skewness due to buoyancy forces in a similar manner so that hot 
ascending cells prevail in the experiment. 

Thus the present flow with strong stratification and large Prandtl number and 
moderate Reynolds number provokes a process that creates cold and hot, locally 

-- 
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FIQURE 11 .  Spatial distribution of local vertical heat fluxes wT in horizontal cross-sections at 
z =0 and t = 0, 2 and 4 for Ri = 0.1 (left) and Ri = 1 (right). Whitelblack areas indicate negative/ 
positive heat fluxes with absolute values larger than 0.0004. For Ri = 1 and t = 4 the hot ascending 
cells are marked H and the cold descending cells are marked C. 

isolated small turbulent cells at places where the initial temperature possesses 
corresponding extreme values. These small buoyancy-driven cells with locally 
positive heat flux modulate larger gravity waves with zero heat flux which have been 
generated in the stable environment. Buoyancy forces suppress vertical motions so 
that the turbulence gradually degenerates towards a two-dimensional state. If 
Pr > 1, the thermal fluctuations have a longer ‘lifetime’ and hence the two- 
dimensional cells become dynamically inactive hot and cold spots in the wavy flow. 
This is the situation that Gibson (1987) calls ‘fossil turbulence’. 

As discussed by Riley et al. (1981), the CGHF converts available potential energy 
Epot = Rim12 (Gill 1982) into kinetic energy of the velocity fluctuations E = 
-12. This can be seen from (14) and (17). In fact, if we form the total energy as the 
sum of potential energy Epot and kinetic energy E ,  we see that the total energy is 
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FIGURE 12. Spatial distribution of vertical velocity w and temperature T in horizontal cross- 
sections a t  z = 0 and t = 4 for Ri = 1. The white/black areas represent negative/positive 
deviations from the mean with absolute values larger than 0.01. They correspond to those in figure 
11 marked with C and H, respectively. 

invariant with respect to  the heat flux. Thus, the CGHF is consistent with energy 
conservation. In  contrast to the results of Riley et al. (1981) and Hunt et al. (1988), 
who applied the rapid distortion theory to the development of stratified sheared and 
unsheared homogeneous turbulent flows, the CGHF observed in our simulations does 
not oscillate around zero but keeps its sign. The oscillations are a consequence of the 
initial imbalance between kinetic and available potential energy and thus occur a t  all 
scales with a time period of x n / N ,  where N is the Brunt-Vaisala frequency. The 
persistent positive heat flux reflects the imbalance of dissipation of kinetic and 
potential energy and is thus a consequence of small-scale motions. 

Note that for a steady-state flow without diffusional or external sources of 
temperature variance, the heat must flow down gradient as can be seen from (17), 
because only then can the production term balance the positive thermal dissipation 
rate. Thus the CGHF is a property of a flow in which the temperature variance 
(potential energy) is locally in non-equilibrium. I n  fact, the CGHF is necessary to 
achieve a quasi-steady state: in the quasi-steady state, the ratio of potential to 
kinetic energy should stay constant. I n  the present case, the temperature fluctuations 
and thus potential energy are only weakly dissipated by conductivity because of the 
rather large Prandtl number and moderate Reynolds number. Thus the dissipation 
rate of temperature variance is too small to produce the same rate of decay as the 
viscous dissipation does for kinetic energy. I n  the absence of heat flux, this condition 
would cause a non-steady ratio of potential to kinetic energy. Thus, the CGHF 
becomes necessary to restore the quasi-steady state. 

As a consequence of this explanation, we conclude that a CGHF arises if velocity 
fluctuations in stably stratified flows create large amounts of potential energy and 
if the dissipation rate of temperature variance is too small to produce the same decay 
rate as that of kinetic energy. The imbalance is to be expected in particular for large- 
Prandtl-number flows such as water. This explains the appearance of CGHF in the 
experiments of Komori et al. (1983) and Itsweire et al. (1986) while i t  does not occur 
in the air flow experiment of Webster (1964). Alternative reasons for the imbalance 
of potential energy relative to  kinetic energy are initial conditions which produce 
relatively large temperature fluctuations in strongly stratified flows. The CGHF in 
the inhomogeneous boundary layers discussed by Deardorff (1966) and Schumann 
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(1987) are produced by large diffusive sources of potential energy which are not 
balanced by thermal dissipation. 

In  summary, the CGHF can be explained by basically linear processes. Nonlinear 
effects modify the phenomenon but they do not cause the occurrence of the CGHF. 
This is corroborated by the results of Hunt et al. (1988). A t  high Reynolds numbers, 
the dissipation rates for temperature and velocity fluctuations will be less sensitive 
to molecular diffusivities so that the present form of a weakly oscillating but 
persistent positive heat flux (CGHF) is likely to be a feature of moderate-Reynolds- 
number flows only. This has been confirmed by means of the second-order closure 
model described in Schumann (1987) as reported in Gerz (1988 a) .  

5. Closure modelling and proposal for improvements 
5.1. Pressure correlations and closure models 

Correlations of the pressure-strain #i j  and the pressuretemperature gradient #iT 

occur in the equations of the Reynolds stresses, (10)-(13), and the heat fluxes, (15) 
and (16). In second-order models, these terms must be modelled to close the 
equations as proposed by Launder (1975, 1976) and Zeman & Lumley (1976) for 
stratified flows with small to moderate Richardson numbers. Here, the validity of 
such models will be investigated for the case where the stability is high (Ri = 1) and 
improvements will be suggested. Direct simulation suits this purpose because 
pressure fluctuations transfer energy between Fourier modes at wavenumbers of 
comparable magnitude which can all be resolved by the simulations. This contrasts 
with the nonlinear energy transfer from small to large wavenumbers which controls 
the dissipation rates but requires higher numerical resolution. 

In  a stratified shear flow the correlations 

are composed of three contributions 

The contribution to #ij  are the turbulent-turbulent (Rotta) term 
term due to mean shear 
Corresponding models (Launder 1976) are 

the production 
and the production term due to buoyancy &. 

Here, we have introduced a vectorial Richardson number associated with a gravity 
vector (IRiJ = IRilS13) and a shear tensor (A'$~ = Xd1,Sk3) to complete the equations, 
and cl, c2 ,  c3 are the model coefficients. 

Figure 13 (a)  illustrates the development of #11, #22, #33 and q513 with time for strong 
stratification (Ri = 1) .  The correlations are calculated from the simulated results of 
turbulent velocity and pressure as defined in (22a) .  The pressure-strain terms act to 
reduce the anisotropy of the flow. Initially the sheaf creates large values of m and 
therefore is negative and distributes the energy from the downstream to the 
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FIGURE 13. Pressurestrain correlations C$i, for Ri = 1 versus time. (a )  Results from the direct 
simulation with (22a);  (b) results of the closure model (23a);  (24)-(26) with the coefficients c ,  = 2.0, 
c2 = 0.6 and c3 = 0.3. 

c, c: c2 c3 c: 

Launder (1985), Zeman & Lumley (1976) 2.0 0.6 0.3 

Weinstock (1986) 0.6 0.5 0.6 0.3 0.6 

Best results for Re, x 25 and Ri = 1 0.1 0.6 0.6 

TABLE 2. Model coefficients of the C$ij 

lateral and vertical components of the normal stresses. I n  phase with UW, #11 reaches 
its minimum values a t  t x 1.3. Components q522 and q533 are positive in this period and 
act as source terms for 'iiis and WW. Note that the trace q5ii must vanish identically 
owing to continuity. The term q522 is larger than q533 because the lateral stress 
component receives more kinetic energy than the vertical one owing to the buoyancy 
effect. 

changes sign and becomes a 
CGHF. Then the positive heat flux creates dominating vertical motions ww causing 
a sign change of q511 and q533 in the interval 1.8 < t < 2.7 during which the CGHF 
reaches its maximum value. The component q533 is negative and reaches its maximum 
magnitude a t  this time, and redistributes the kinetic energy in almost equal shares 
to  the downstream and the lateral stress components which have positive pressure- 
strain terms. 

The positive q513 acts as a sink for --uw; q513 decreases with --uw. The former 
changes sign at t x 2.5 to counteract the strong decay of the momentum flux, see 
figure 3 ( d ) .  Thus, the evolution of the pressure-strain correlation reflects the change 
from shear- to buoyancy-dominated turbulence. I n  the quasi-stationary state of the 
flow, buoyancy dominates and causes q533r q513 < 0 and q511 > 0. 

For comparison, the behaviour of the pressurestrain terms as predicted by the 
models (24)-(26) is depicted for the same case in figure 13(b). These results are 
obtained using the values of the coefficients c l ,  c2 and c3 proposed by Launder (1975) 
and Zeman & Lumley (1976), see table 2. 

The result of the closure model differs considerably from the result of the direct 

The situation is reversed a t  a later time when 
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FIGURE 14. Best results for closure modelling &. Same data as in figure 13 ( b )  (but with the 

coefficients c, = 0.1, c2 = 0.6 and c3 = 0.6. 

simulation. The closure model predicts values that are about double the magnitude 
of those of the simulation. Part of this difference is because the closure model assumes 
isotropic dissipation while the simulations exhibit strongly anisotropic dissipation 
rates, see Figure 7 ( b ) ,  which contribute to the isotropizing effects. This is certainly 
a feature of the rather small turbulence Reynolds number of our simulation. More 
importantly, the closure model fails to describe the change in sign of $11 and $22. By 
considering the individual contributions of the various model components, we found 
that the reason for these discrepancies is mainly the overestimation of the turbulent- 
turbulent interaction. Stratification acts to reduce the ' collisions ' between flow 
parcels. These collisions constitute the basic physical mechanism of the turbu- 
lent-turbulent interaction. Moreover, the model underestimates the redistribution 
of buoyancy sources, i.e. c3 is too small. 

Much better agreement is achieved if c1 is reduced to 0.1 and if c3 is increased to 
0.6, as shown in figure 14. The coefficient c2 has been kept unchanged. With these 
coefficienh values the model correctly describes the sign changes of $11, $33 and $13 

and predicts the same magnitude as the direct simulation results a t  the final 
time. 

Launder (1975) deduced the value of 0.6 for the coefficient c3 by adjusting the 
model results to the data of Webster (1964). Zeman & Lumley (1976) determined the 
value c3 = 0.3 for isotropic turbulence. Weinstock (1986) deduced analytically that 
in stably stratified flows the turbulen+-turbulent interaction is reduced by strati- 
fication. This corresponds to a reduced value cf instead of c1 (see table 2) and an 
additional buoyancy term which can be combined with $t,3 thus resulting in a new 
coefficient cf = 0.6 which confirms Launder's empirical value. Weinstock (1986) 
points out that the turbulent-turbulent term reduces the rate of growth of 
anisotropy rather than causing a return to isotropy. The direct simulation results 
confirm this conclusion and show that the influence of is almost negligible in flows 
with strongly stable stratification. 

The direct numerical simulation results for the pressure-temperature gradient 
correlations $lT defined in (22b)  are plotted in figure 15(a) for the same Richardson 
number, Ri = 1. The lateral component $2T is non-zero only because of statistical 
uncertainties due to the limited data from which the mean values are computed. The 
horizontal component q51T is also small but reflects the change from a shear- to 
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FIGURE 15. Pressuretemperature gradient correlations versus time for Ri  = 1 .  (a) Results 
evaluated from the simulations according to ( 2 2 b ) ;  (b) results obtained from the model equations 
(27)-(29) with the coefficients c , ~  = 1.05, e; ,  = 0.05, cZT = 0.96, ciT = 0.5 and cIT = 0.5 (solid lines). 
Using E / E  instead of w/cTT in (27)  results in the dashed lines. 

‘1T ‘;T ‘2T ‘;T ‘3T 

Dakos & Gibson (1987), Launder (1976) 2.1 0.1 0.96 0.5 0.5 

Best results for Re, x 25 and Ri = 1 1.05 0.05 0.96 0.5 0.5 

TABLE 3. Model coefficients of  the C,,. 

buoyancy-dominated turbulence. Both $lT and GT’ change sign a t  t x 1.8 and reach 
their maximum values at t x 2.7. The CGHF now diminishes and the positive 
41T balances this sink to keep uT at a constant level. Hence, is the direct 
counterpart of the source term -SGT’ in (15). Component $3T is always negative and 
of much larger magnitude than The negative value of Q / 3 T  keeps negative as 
required for a down-gradient flux, see (16). It reaches maximum magnitude at 
t x 2.0 when -a experiences the strongest decay rate (figure 3 f). 

As mentioned earlier, $iT is, like &, composed of three parts which describe the 
effects of turbulent-turbulent interactions, shear and buoyancy, see (23 b).  Dakos & 
Gibson (1987) followed Weinstock’s (1986) approach and proposed a model for the 
turbuleneturbulent and shear contributions. A model for the buoyancy term was 
derived by Launder (1976). A combination of these models results in 

$iTl = - c ~ ~ = u ~ T + c ’ , ~ ~ E ~ ~ ~ s ~ ,  ~ T T  - 
TT 

where sk = d,,. The coefficients proposed by Dakos & Gibson (1987) and Launder 
(1976) are listed in table 3. They are valid for large-Reynolds-number flows which 
have reached quasi-stationarity. For the reason discussed earlier in this section, the 
values of c , ~  and ciT should be lowered by a factor of about two. Comparison of the 
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solid curves in figure 15 ( b )  with those in figure 15 (a)  shows that for these coefficients 
the model represents the same qualitative behaviour as found from the direct 
simulations, a t  least when the flow has reached a quasi-stationary state. 

The closure model requires knowledge of the characteristic timescale of the 
thermal fluctuations T T / e T T  in the turbulence-turbulence term (27). Some closure 
models solve transport equations for TT and eTT (e.g. Elghobashi & Launder 1983) 
which provide the required timescale. Others usually replace T T / e T T  by the velocity 
timescale E / E .  The dashed curves in figure 15(6) display the effect of this 
approximation on the pressure-temperature gradient correlations given by the 
model. The results show magnitudes for and q43T that are too large, while fails 
to reflect the sign change that is observed in the direct simulation results. 

5.2. The dissipative timescale ratio 
As explained above, the ratio of the dissipative timescales for kinetic energy and 

Ele 
temperature variance 

r ,  = - 
T T / E T F  

is important for models of the pressure-temperature correlations. Furthermore, 
closure models which do not solve a transport equation for eTT use this ratio to 
obtain eTT once the values of E ,  e and TT are known. Several experimental and 
theoretical studies have been performed to investigate the dependency of rD on other 
measurable flow quantities to  yield an estimate for the thermal dissipation rate. 
Warhaft & Lumley (1978) measured the decay of the temperature fluctuations in 
isotropic turbulent flows. They found that the initial value of TT determines the 
development of the turbulent temperature field. Their result for rD varied between 
0.96 and 2.39 and depends on the difference of the peak wavenumber for E and 
TT, i.e. on the difference between velocity and temperature lengthscales. After an 
initial transient development, r, reaches a constant value. Sirivat & Warhaft (1983) 
also observed large scatter of r, around a mean value of 1.3. Their results confirm 
that rD depends strongly on the temperature variance of the flow but the authors 
suggest that the large scatter of r, may be caused by measuring and calibration 
errors. By definition, the timescale ratio is proportional to the square of the ratio of 
microscales of velocity and temperature divided by the Prandtl number. Corrsin 
(1951) and Budwig et al. (1985) determined the ratio of microscales and their result 
implies that the timescale ratio should be independent of the molecular Prandtl 
number. 

The initial conditions of the present simulations prescribe equal spectra and equal 
r.m.s. values for velocity and temperature fluctuations, so that the thermal and 
dynamic lengthscales are also equal. As a consequence, we obtain rD = 1/Pr initially 
for all Richardson numbers. Figure 16 illustrates the dependence of the simulation 
results for rD on Richardson and Prandtl number. The results show that rD increases 
with time and reaches asymptotic values for 4 < t < 6 depending on Ri and Pr. As 
stability increases, the timescale ratio stays constant. We have included a case with 
extreme stability (Ri = 100) to illustrate that this constant is enforced when 
stratification suppresses all vertical motions. 

By definition, r, remains constant if the velocity and temperature fields develop 
similarly in time. This is certainly the case if the flow behaves linearly so that the 
length scales for velocity and temperature change a t  the same rate and thus keep a 
constant ratio. A linear behaviour is to be expected for strongly stable stratification 
since then all nonlinear terms are suppressed. 
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FIGURE 16. Dissipative timescale ratio r, versus time. (a) Pr = 5 ,  (6) Pr = 1 for various Ri values. 
The results for Ri = 100 in (a) and for all simulations in ( b )  were obtained from simulations using 
323 grid points. 
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7. Dissipative timescales of (a )  kinetic energy and (6) temperature variance 
and several values of the Richardson number. 

for Pr = 5 

In a non-stratified shear flow with constant mean temperature, the velocity 
length- and timescales increase owing to the shear production of turbulence, 
whereas the timescale of the temperature fluctuations decreases monotonically as 
can be seen from figure 17. Hence, r, increases in time as reflected in figure 16 for 
Ri = 0. 

If kinetic energy and temperature variance are excited by mean gradients of both 
temperature and velocity, then r, achieves values between the limits obtained for 
zero and very large Richardson numbers. The thermal timescale T T / e , ,  is rather 
insensitive to Ri > 0, as is indicated by the similarity in the developments of variance 
and dissipation rate and is corroborated by figure 17(b) .  On the other hand, the 
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mechanical timescale E / E  depends strongly on Ri (figure 17a) because buoyancy 
affects kinetic energy directly via the term IRilZ' in (14). Initially, shear production 
dominates and therefore E / E  increases while TT/s , ,  decreases for all Ri. As a 
consequence, r, increases with time. This increase, however, is limited by the 
buoyancy forces so that the maximum value of rD decreases with increasing Ri. Thus, 
for large Richardson number the timescale ratio does depend on the molecular 
Prandtl number whereas for small Richardson number and high Reynolds numbers 
this dependence diminishes as predicted by Corrsin (1951). 

6. Conclusions 
We have described a numerical method to investigate homogenous turbulent shear 

flows with stable stratification. This flow is of importance in many engineering and 
geophysical applications. The method has been applied to investigate the influence 
of shear and buoyancy forces on the evolution of homogenous flows for Prandtl 
numbers of 0.7 (air) and 5 (water) and Richardson numbers between zero and 
unity. 

The Reynolds number is restricted by the number of grid points that we were able 
to provide on the computer available for this study, particularly so for our cases with 
rather large Prandtl numbers because Re Pr controls thermal dissipation. We 
performed two additional simulations for Ri = 1 with 963 and 1283 grid points 
(details are to be reported elsewhere) which confirm that the present results are not 
significantly influenced by truncation errors. The Reynolds number, however, is 
large enough to allow substantial nonlinear interactions as reflected by the time 
behaviour of velocity-derivative skewness. But it is certainly not large enough to 
allow direct extrapolation to, say, geophysical applications. In  particular, we 
observed strongly anisotropic dissipation rates which probably are only valid for 
moderate Reynolds numbers only. On the other hand, the agreement of the 
simulated flow data with measured data, particularly those from the water-channel 
experiments of Komori et al. (1983) and the wind-tunnel data of Webster (1964), 
indicates that the essential physical processes and phenomena are described 
correctly. 

The experiments as well as the simulations show that a persistent CGHF occurs in 
a stably stratified, initially turbulent shear flow if the thermal dissipation rate is too 
small to limit the ratio of available potential energy to kinetic energy. Large 
potential energy may originate either from the initial conditions or be produced by 
velocity fluctuations in stratified flow if the Richardson number Ri is significantly 
larger than a critical value. This critical value is found to be close to 0.1 for small 
shear numbers and will approach the linear prediction 0.25 for very large shear 
numbers. The value of the critical Richardson number in the small-shear-number 
case depends also on the initial conditions and the Reynolds number. 

For strongly stable stratification, regions with large temperature fluctuations 
develop into hot rising and cold descending dynamically active cells which cause the 
superposition of small-scale motions on the dominating gravity wave field in the 
developed flow. These cells degenerate to hot and cold dynamically inert spots (fossil 
turbulence) if Pr > 1 and carry heat counter to the positive gradient of the mean 
temperature (CGHF). High-Prandtl-number flows are more likely to exhibit the 
CGHF phenomenon than low-Prandtl-number cases. The same conclusion has also 
been found from studies using second-order closure models by Schumann (1987). 
However, it is to be expected that the relative importance of the molecular Prandtl 
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number diminishes a t  higher Reynolds numbers. The CGHF can essentially be 
explained in terms of linear models. 

The anisotropy of the normal stresses does not increase monotonically with 
increasing Ri but achieves a maximum value close to the critical Richardson 
number and decreases for supercritical Richardson values. The turbulent Prandtl 
number increases strongly with increasing Ri, achieving infinity when the turbulent 
vertical heat flux vanishes. 

Weinstock (1986) emphasized that the turbulent-turbulent interaction (Rotta 
term) in the pressure-strain model limits the increase of the anisotropy rather than 
returning the flow to an isotropic state. The isotropizing effect is still weakened in 
strongly stable flows while the redistributing contributions from shear and buoyancy 
become dominant. Optimal values of the model coefficients have been reported for 
this type of flow a t  moderate Reynolds numbers. 

The pressure-temperature gradient term requires knowledge of the thermal 
timescale in the turbulence-turbulence term. The reported results corroborate 
experimental observations which indicate that the dissipative timescale ratio in 
decaying turbulence always depends on the initial values. The initial value of r, 
depends on the molecular Prandtl number. The timescale ratio stays close to this 
initial value if strong stratification suppresses nonlinear interactions. 

The experiments to which we have compared our results in this study have been 
used by Launder (1975) and others to  calibrate second-order closure models. 
Thus, we are approaching the situation where direct numerical simulations may 
complement such measurements. We are looking forward to repeating the simu- 
lations with the present method for larger Reynolds numbers when the required 
computer resources become available. 
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